Trust Region Algorithms and Timestep Selection
نویسنده
چکیده
Unconstrained optimization problems are closely related to systems of ordinary differential equations (ODEs) with gradient structure. In this work, we prove results that apply to both areas. We analyze the convergence properties of a trust region, or Levenberg–Marquardt, algorithm for optimization. The algorithm may also be regarded as a linearized implicit Euler method with adaptive timestep for gradient ODEs. From the optimization viewpoint, the algorithm is driven directly by the Levenberg–Marquardt parameter rather than the trust region radius. This approach is discussed, for example, in [R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley, New York, 1987], but no convergence theory is developed. We give a rigorous error analysis for the algorithm, establishing global convergence and an unusual, extremely rapid, type of superlinear convergence. The precise form of superlinear convergence is exhibited—the ratio of successive displacements from the limit point is bounded above and below by geometrically decreasing sequences. We also show how an inexpensive change to the algorithm leads to quadratic convergence. From the ODE viewpoint, this work contributes to the theory of gradient stability by presenting an algorithm that reproduces the correct global dynamics and gives very rapid local convergence to a stable steady state.
منابع مشابه
Solving Environmental/Economic Power Dispatch Problem by a Trust Region Based Augmented Lagrangian Method
This paper proposes a Trust-Region Based Augmented Method (TRALM) to solve a combined Environmental and Economic Power Dispatch (EEPD) problem. The EEPD problem is a multi-objective problem with competing and non-commensurable objectives. The TRALM produces a set of non-dominated Pareto optimal solutions for the problem. Fuzzy set theory is employed to extract a compromise non-dominated sol...
متن کاملیک الگوریتم کارا برای زیر مسالهی ناحیه اطمینان توسیع یافته با دو قید خطی
Trust region subproblem (TRS), which is the problem of minimizing a quadratic function over a ball, plays a key role in solving unconstrained nonlinear optimization problems. Though TRS is not necessarily convex, there are efficient algorithms to solve it, particularly in large scale. Recently, extensions of TRS with extra linear constraints have received attention of several researchers. It ha...
متن کاملSolving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique
In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems that is equipped with the filter technique. In the proposed method, the various nonmonotone technique is used. Using this technique, the algorithm can advantage from nonmonotone properties and it can increase the rate of solving the problems. Also, the filter that is used in...
متن کاملروش به روز رسانی متقارن از مرتبه اول برای حل مسایل بهینه سازی مقیاس بزرگ
The search for finding the local minimization in unconstrained optimization problems and a fixed point of the gradient system of ordinary differential equations are two close problems. Limited-memory algorithms are widely used to solve large-scale problems, while Rang Kuta's methods are also used to solve numerical differential equations. In this paper, using the concept of sub-space method and...
متن کاملVariable Timestep Integrators for Long-Term Orbital Integrations
Symplectic integration algorithms have become popular in recent years in long-term orbital integrations because these algorithms enforce certain conservation laws that are intrinsic to Hamiltonian systems. For problems with large variations in timescale, it is desirable to use a variable timestep. However, naively varying the timestep destroys the desirable properties of symplectic integrators....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 37 شماره
صفحات -
تاریخ انتشار 1999